123456789101112131415161718192021222324252627282930313233343536373839404142 |
- import os
- import pytest
- import torch
- import whisper
- from whisper.tokenizer import get_tokenizer
- @pytest.mark.parametrize("model_name", whisper.available_models())
- def test_transcribe(model_name: str):
- device = "cuda" if torch.cuda.is_available() else "cpu"
- model = whisper.load_model(model_name).to(device)
- audio_path = os.path.join(os.path.dirname(__file__), "jfk.flac")
- language = "en" if model_name.endswith(".en") else None
- result = model.transcribe(
- audio_path, language=language, temperature=0.0, word_timestamps=True
- )
- assert result["language"] == "en"
- assert result["text"] == "".join([s["text"] for s in result["segments"]])
- transcription = result["text"].lower()
- assert "my fellow americans" in transcription
- assert "your country" in transcription
- assert "do for you" in transcription
- tokenizer = get_tokenizer(model.is_multilingual, num_languages=model.num_languages)
- all_tokens = [t for s in result["segments"] for t in s["tokens"]]
- assert tokenizer.decode(all_tokens) == result["text"]
- assert tokenizer.decode_with_timestamps(all_tokens).startswith("<|0.00|>")
- timing_checked = False
- for segment in result["segments"]:
- for timing in segment["words"]:
- assert timing["start"] < timing["end"]
- if timing["word"].strip(" ,") == "Americans":
- assert timing["start"] <= 1.8
- assert timing["end"] >= 1.8
- timing_checked = True
- assert timing_checked
|