123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- import os
- from functools import lru_cache
- from typing import Union
- import ffmpeg
- import numpy as np
- import torch
- import torch.nn.functional as F
- from .utils import exact_div
- # hard-coded audio hyperparameters
- SAMPLE_RATE = 16000
- N_FFT = 400
- N_MELS = 80
- HOP_LENGTH = 160
- CHUNK_LENGTH = 30
- N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000: number of samples in a chunk
- N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000: number of frames in a mel spectrogram input
- N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
- FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 100 mel frames in 1s (10ms each)
- TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 50 audio tokens in 1s (20ms each)
- def load_audio(file: str, sr: int = SAMPLE_RATE):
- """
- Open an audio file and read as mono waveform, resampling as necessary
- Parameters
- ----------
- file: str
- The audio file to open
- sr: int
- The sample rate to resample the audio if necessary
- Returns
- -------
- A NumPy array containing the audio waveform, in float32 dtype.
- """
- try:
- # This launches a subprocess to decode audio while down-mixing and resampling as necessary.
- # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
- out, _ = (
- ffmpeg.input(file, threads=0)
- .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
- .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
- )
- except ffmpeg.Error as e:
- raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
- return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
- def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
- """
- Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
- """
- if torch.is_tensor(array):
- if array.shape[axis] > length:
- array = array.index_select(dim=axis, index=torch.arange(length, device=array.device))
- if array.shape[axis] < length:
- pad_widths = [(0, 0)] * array.ndim
- pad_widths[axis] = (0, length - array.shape[axis])
- array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
- else:
- if array.shape[axis] > length:
- array = array.take(indices=range(length), axis=axis)
- if array.shape[axis] < length:
- pad_widths = [(0, 0)] * array.ndim
- pad_widths[axis] = (0, length - array.shape[axis])
- array = np.pad(array, pad_widths)
- return array
- @lru_cache(maxsize=None)
- def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
- """
- load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
- Allows decoupling librosa dependency; saved using:
- np.savez_compressed(
- "mel_filters.npz",
- mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
- )
- """
- assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
- with np.load(os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")) as f:
- return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
- def log_mel_spectrogram(audio: Union[str, np.ndarray, torch.Tensor], n_mels: int = N_MELS):
- """
- Compute the log-Mel spectrogram of
- Parameters
- ----------
- audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
- The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
- n_mels: int
- The number of Mel-frequency filters, only 80 is supported
- Returns
- -------
- torch.Tensor, shape = (80, n_frames)
- A Tensor that contains the Mel spectrogram
- """
- if not torch.is_tensor(audio):
- if isinstance(audio, str):
- audio = load_audio(audio)
- audio = torch.from_numpy(audio)
- window = torch.hann_window(N_FFT).to(audio.device)
- stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
- magnitudes = stft[..., :-1].abs() ** 2
- filters = mel_filters(audio.device, n_mels)
- mel_spec = filters @ magnitudes
- log_spec = torch.clamp(mel_spec, min=1e-10).log10()
- log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
- log_spec = (log_spec + 4.0) / 4.0
- return log_spec
|