import os import pytest import torch import whisper @pytest.mark.parametrize("model_name", whisper.available_models()) def test_transcribe(model_name: str): device = "cuda" if torch.cuda.is_available() else "cpu" model = whisper.load_model(model_name).to(device) audio_path = os.path.join(os.path.dirname(__file__), "jfk.flac") language = "en" if model_name.endswith(".en") else None result = model.transcribe(audio_path, language=language, temperature=0.0, word_timestamps=True) assert result["language"] == "en" transcription = result["text"].lower() assert "my fellow americans" in transcription assert "your country" in transcription assert "do for you" in transcription timing_checked = False for segment in result["segments"]: for timing in segment["words"]: assert timing["start"] < timing["end"] if timing["word"].strip(" ,") == "Americans": assert timing["start"] <= 1.8 assert timing["end"] >= 1.8 print(timing) timing_checked = True assert timing_checked