import os import pytest import torch import whisper from whisper.tokenizer import get_tokenizer @pytest.mark.parametrize("model_name", whisper.available_models()) def test_transcribe(model_name: str): device = "cuda" if torch.cuda.is_available() else "cpu" model = whisper.load_model(model_name).to(device) audio_path = os.path.join(os.path.dirname(__file__), "jfk.flac") language = "en" if model_name.endswith(".en") else None result = model.transcribe( audio_path, language=language, temperature=0.0, word_timestamps=True ) assert result["language"] == "en" assert result["text"] == "".join([s["text"] for s in result["segments"]]) transcription = result["text"].lower() assert "my fellow americans" in transcription assert "your country" in transcription assert "do for you" in transcription tokenizer = get_tokenizer(model.is_multilingual, num_languages=model.num_languages) all_tokens = [t for s in result["segments"] for t in s["tokens"]] assert tokenizer.decode(all_tokens) == result["text"] assert tokenizer.decode_with_timestamps(all_tokens).startswith("<|0.00|>") timing_checked = False for segment in result["segments"]: for timing in segment["words"]: assert timing["start"] < timing["end"] if timing["word"].strip(" ,") == "Americans": assert timing["start"] <= 1.8 assert timing["end"] >= 1.8 timing_checked = True assert timing_checked