|
@@ -27,12 +27,11 @@ _MODELS = {
|
|
|
}
|
|
|
|
|
|
|
|
|
-def _download(url: str, root: str) -> bytes:
|
|
|
+def _download(url: str, root: str, in_memory: bool) -> Union[bytes, str]:
|
|
|
os.makedirs(root, exist_ok=True)
|
|
|
- filename = os.path.basename(url)
|
|
|
|
|
|
expected_sha256 = url.split("/")[-2]
|
|
|
- download_target = os.path.join(root, filename)
|
|
|
+ download_target = os.path.join(root, os.path.basename(url))
|
|
|
|
|
|
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
|
|
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
|
@@ -40,7 +39,7 @@ def _download(url: str, root: str) -> bytes:
|
|
|
if os.path.isfile(download_target):
|
|
|
model_bytes = open(download_target, "rb").read()
|
|
|
if hashlib.sha256(model_bytes).hexdigest() == expected_sha256:
|
|
|
- return model_bytes
|
|
|
+ return model_bytes if in_memory else download_target
|
|
|
else:
|
|
|
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
|
|
|
|
@@ -58,7 +57,7 @@ def _download(url: str, root: str) -> bytes:
|
|
|
if hashlib.sha256(model_bytes).hexdigest() != expected_sha256:
|
|
|
raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.")
|
|
|
|
|
|
- return model_bytes
|
|
|
+ return model_bytes if in_memory else download_target
|
|
|
|
|
|
|
|
|
def available_models() -> List[str]:
|
|
@@ -66,7 +65,7 @@ def available_models() -> List[str]:
|
|
|
return list(_MODELS.keys())
|
|
|
|
|
|
|
|
|
-def load_model(name: str, device: Optional[Union[str, torch.device]] = None, download_root: str = None) -> Whisper:
|
|
|
+def load_model(name: str, device: Optional[Union[str, torch.device]] = None, download_root: str = None, in_memory: bool = False) -> Whisper:
|
|
|
"""
|
|
|
Load a Whisper ASR model
|
|
|
|
|
@@ -79,28 +78,33 @@ def load_model(name: str, device: Optional[Union[str, torch.device]] = None, dow
|
|
|
the PyTorch device to put the model into
|
|
|
download_root: str
|
|
|
path to download the model files; by default, it uses "~/.cache/whisper"
|
|
|
+ in_memory: bool
|
|
|
+ whether to preload the model weights into host memory
|
|
|
|
|
|
Returns
|
|
|
-------
|
|
|
model : Whisper
|
|
|
The Whisper ASR model instance
|
|
|
"""
|
|
|
+
|
|
|
+ if device is None:
|
|
|
+ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
+ if download_root is None:
|
|
|
+ download_root = os.path.join(os.path.expanduser("~"), ".cache", "whisper")
|
|
|
+
|
|
|
if name in _MODELS:
|
|
|
- model_bytes = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/whisper"))
|
|
|
+ checkpoint_file = _download(_MODELS[name], download_root, in_memory)
|
|
|
elif os.path.isfile(name):
|
|
|
- model_bytes = open(name, "rb").read()
|
|
|
+ checkpoint_file = open(name, "rb").read() if in_memory else name
|
|
|
else:
|
|
|
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
|
|
|
|
|
- with io.BytesIO(model_bytes) as fp:
|
|
|
- checkpoint = torch.load(fp, map_location="cpu")
|
|
|
+ with (io.BytesIO(checkpoint_file) if in_memory else open(checkpoint_file, "rb")) as fp:
|
|
|
+ checkpoint = torch.load(fp, map_location=device)
|
|
|
+ del checkpoint_file
|
|
|
|
|
|
dims = ModelDimensions(**checkpoint["dims"])
|
|
|
- state_dict = checkpoint["model_state_dict"]
|
|
|
model = Whisper(dims)
|
|
|
- model.load_state_dict(state_dict)
|
|
|
-
|
|
|
- if device is None:
|
|
|
- device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
+ model.load_state_dict(checkpoint["model_state_dict"])
|
|
|
|
|
|
return model.to(device)
|